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Abstract

The Debye model is frequently used to explain the
dielectric behaviour of materials. A good description
of the experimental results is often obtained by using
a distribution of relaxation times. In this work, it is
proposed to extend the Debye model to the depolar-
isation of two or more types of dipoles occurring
simultaneously. With this procedure, it is observed
that permittivity Cole±Cole plots appear with two or
more semicircles overlapping each other, and can
give origin to one ¯attened semicircle. The same type
of behaviour is observed for the impedance Cole±
Cole plots, and both type of description of experi-
mental data usually give very similar results. Assuming
that relaxation times are thermally activated para-
meters, with positive or negative activation energies
depending on the type of the dipoles, it is possible to
obtain dielectric responses similar to those of the
paraelectric regions of ferroelectric materials, and
dielectric peaks on the permittivity-versus-tempera-
ture graphs similar to the relaxor behaviour found in
some ferroelectric materials. # 1999 Elsevier Sci-
ence Limited. All rights reserved
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1 Introduction

The dielectric behaviour of materials under an
external ac applied ®eld has been the focus of
numerous papers, in view of its high scienti®c and
technologic importance. Measurements are made
in a very wide range of frequencies and tempera-
tures, and for many types of materials. Jonscher1

made a very comprehensive review on the subject,
and presented a model, the many-body model, for
the dielectric spectroscopy.2 This model introduces
the idea of correlated states in the material, arising
from interactions between individual dipoles in an
interactive system, which form a narrow half-®lled

band. The preferred orientations of the system can
be represented by two potential wells, where their
relative occupancy determines the total polarisa-
tion, and the application of the external ®eld will
excite these states making transitions between the
two wells. The authors proposed three types of
transitions, one of them, denoted a, corresponding
to the classical thermally-excited transition of a
single particle from one well to the other, which is
the case involved in the Debye process.1 The other
two transitions correspond to con®gurational tun-
nelling in which large number of interacting particles
undergo small adjustments which collectively give the
result of a large transition of a single particle (sic).
The results of this model agree with many experi-
mental data, since it gives an expression similar to
the `Universal' law, i.e. the experimental observa-
tion that the depolarisation current i t� � has a
power-law dependence on t; i t� � / tÿn. It is also
signi®cant that near the loss peak frequency, the
model gives a Debye-like behaviour. However, it is
well known that the ideal Debye model do not
describe the dielectric response of the majority of
the materials, and other approaches have been
made to this model, namely, the assumption that
the dipoles have a distribution of relaxation times.
Since the many-body model predicts a region near
the loss peak where the Debye description is
observed, it would be interesting to check if a system
with two or more types of dipoles, i.e. dipoles with
di�erent relaxation times, described by the Debye
model, would give a dielectric behaviour similar to
those experimentally found. This case is di�erent
from the ones considering a distribution of relaxa-
tion times, since we are not looking for any speci®c
distribution in only one process, but rather to dif-
ferent processes with speci®c relaxation times.

2 Basic Concept

Figure 1 represents the frequency variation of
the real and the imaginary parts of the complex
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relative permittivity, hereafter designated simply
by "0 and "00, respectively, of an arbitrary material.
In the high frequency region, "1 consists of the free
space contribution and of the sum of all dielectric
susceptibilities for the mechanisms operating in the
material, and, in the low frequency region, "s con-
sists in "1 plus the relaxation mechanism corre-
sponding to the loss peak region. We need to ®nd
an expression of the form

" w� �0� "1 � f w� � �1�

which reduces to f 0� � � "s ÿ "1, for w � 0. When a
steady ®eld is switched o�, following Debye, the
polarisation decays exponentially with a time con-
stant �, the characteristic relaxation time of the
dipole, as

P t� � � POe
ÿt=� �2�

To obtain the frequency response f w� �, we take the
Laplace's transform,

f w� � �
�1
0

P t� �eiwtdt

� PO

ÿiw� 1=�
�3�

Using the condition f w� � for w � 0, we obtain the
known Debye equation

" w� �0� "1 � "s ÿ "1
ÿiw� � 1

�4�

which, after the separation of the real and imagin-
ary parts, gives

"0 � "1 � "s ÿ "1
1� w�� �2 �5�

"00 � w� "s ÿ "1� �
1� w�� �2 �50�

In this paper we shall use the same concept of
depolarisation current that gave origin to eqn (50),
but with two or more types of dipoles. If the sys-
tem has n di�erent types of dipoles, the solution for
eqn (3) is simply

f w� � �
Xn
j�1

Pj�j 1� iw�j
ÿ �

1� w�j
ÿ �2 �6�

where Pj is the contribution of the dipole type j to
the polarisation, and hence

Xn
i�1

Pj � PO �7�

With eqn (7) and the condition f 0� � � "s ÿ "1, the
substitution of eqn (6) into eqn (1) will give the
desired Debye description with many types of
dipoles. Equation (6) is therefore an extension to the
Debye model, taking in consideration the simulta-
neous depolarisation of dipoles with di�erent
relaxation times. We are now able to compute
some arbitrary parameters in order to check if the
proposed extension is adequate to the analysis of
experimental data.

3 The Simplest Case: Two Types of Dipoles

The simplest case is, of course, when j � 2. We
shall assume that P1 � �PO, and P2 � 1ÿ �� �PO,
where � is the fraction of PO due to P1. The solu-
tions for the real and the imaginary parts are then,

"0 � "1 � "s ÿ "1
��1 � 1ÿ �� ��2

��1

1� w�1� �2 �
1ÿ �� ��2

1� w�2� �2
 ! �8�

"00 � "s ÿ "1
��1 � 1ÿ �� ��2
��21

1� w�1� �2 �
1ÿ �� ��22

1� w�2� �2
 ! �80�

which reduce to eqn (5) and (50), respectively, for
� � 1 (or � � 0), as expected.
We shall ®rst analyse di�erent cases, assuming

any arbitrate values for "s and "1, at constant
temperature, i.e. with �1 and �2 constants. Figure 2

Fig. 1. Sketch of the frequency variation of the real and ima-
ginary parts of the complex relative permittivity of a material.
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Fig. 2. Variation of "0 and "00 with frequency (left column) and Cole±Cole plots of the complex permittivity, "0-versus-"00 (right
column), for four di�erent values of the relaxation time �2 (inserted in each case), keeping constant � � 0�9 and �1 � 0�001 s. The

values of "s and "1 can be arbitrarily chosen, but in these examples they are 2000 and 100, respectively.

Dielectric response of materials: extension to the Debye model 2081



shows the variation of "0 and "00 with the frequency,
in the left column, and the Cole±Cole plot,
"0 ÿ versusÿ "00, in the right column, for ®xed
values of �, � � 0�9, and �1 � 0�001, and for four
values of �2. It can be seen that, when the two
relaxation times, �1 and �2, are closer to each other,
the loss peaks ("00-versus-frequency) merge together
and give `one' rounded, non-Debye type, loss peak,
and the relaxation regions ("0-versus-frequency)
also become a non-Debye type relaxation region.
This means that we do not need a distribution of
relaxation times within only one process, in order
to describe the experimental results like the one
presented in Fig. 2, but, instead, two or more types
of dipoles each one with its own relaxation time
described by the same time function as those pro-
posed by Debye to ®t the data. Far from the loss
peaks, either for lower or higher frequencies, the
dielectric loss depends on w�1 and on wÿ1, respec-
tively, as expected for the Debye model, and cannot
explain other observed frequency dependencies, as
pointed out by Jonscher.1 The Cole±Cole plots
show two semicircles with relative positions in the
"0 scale depending on the di�erence between �1 and
�2: for a large di�erence, the two semicircles inter-
sect slightly, while, for a low di�erence, they are
almost coincident. In the last example of Fig. 2, the
plot seems like a ¯attened semicircle, or a semi-
circle centred below the "0 axis, which is the case
normally taken as non-Debye with a distribution
of relaxation times.
Knowing the variation of "0 and "00 with fre-

quency, it will be important to see their e�ect on
the impedance spectroscopy of the material. We
introduce here the dc conductivity, �dc, which we
assume constant throughout the frequency spec-
trum, i.e. it does not interfere with the dipoles. This
should be the case of a homogeneous and resistive
material, since we are omitting other types of
polarisation, namely the Maxwell±Wagner relaxa-
tion behaviour. Assuming that "0 is the permittivity
value of a perfect capacitance and "00 the con-
ductivity of a resistance, with �ac � w"0"

00, any
dipole will function as an RC parallel element,
because the same voltage is applied to both ele-

ments. The equivalent circuit of such a case is the
one shown in Fig. 3. Figure 4(a) gives the impe-
dance Cole±Cole plot of this circuit, in the case
where there is only one dipole (we assumed a geo-
metric factor g � A=l � 1, where A is the electrode
area and l is the length of the material). It can be
seen that the system shows three minima for Z00:
one for low frequency (high Z0 value), which cor-
responds to the dc conductivity of the material;
another one at intermediate frequencies, which is
observed at the frequency of the maximum of "00,
i.e. the Debye frequency of the dipole; and the last
one at high frequency (low Z0 value), which
depends on both "s and "1. The intermediate Z00

minimum is more or less pronounced depending on
the "1 value: the lower the "1 value the lower the
Z00 value; this minimum never touches the Z0 axis,
and, consequently, the two semicircles will always

Fig. 3. Equivalent circuit for the dielectric response of a
material with dc conductivity, �dc. The dipoles are assumed to
contribute with a pure capacitive part, "0, and a resistive one,

�ac � w"0"
00.

Fig. 4. Impedance Cole±Cole plots for the equivalent circuit
of Fig. 3: (a) when only one type of dipole is present, with a
relaxation time of �1 � 1�25� 10ÿ3 s; (b) when two types of
dipoles are present, with �1 as before, �2 � 8:�3� � 10ÿ5 s, and
� � 0�4 (the arrows indicate the two relative minima for Z00).
The geometrical factor g � A=l (A=area of the electrodes,
l=length of the material) is taken as g=1m, and �dc � 1� 10ÿ6
(Smÿ1). For the dipoles, it was assumed "s � 300, and "1=10.
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intersect each other. Figure 4(b) gives again the
impedance Cole±Cole plot, but now with two
types of dipoles. The choice of the parameters
used was made to conveniently see a fourth Z00

minimum [marked with an arrow in Fig. 4(b)],
which appears in the Debye frequency of the new
dipole. This type of plots are seen in many experi-
mental cases (e.g. Ref. 3). In Fig. 4(a) and (b) we
wanted to show that impedance Cole±Cole plots
can be used to separate the contributions from dc
and ac components, in one part, and to separate
the contributions of di�erent dipoles, in the other.
However, it must be emphasised that careful
microstructure analysis and experimental design
must be performed in the material, in order to
separate the contributions of other `accidents', like
porosity, second phases, grain boundaries, and
electrodes.4,5

4 The E�ect of the Temperature

If the temperature is changed we shall expect it to
in¯uence the polarisation of the dipoles. Two cases
are possible: (i) for higher temperatures it will be
more di�cult to orient the dipoles by the applied
®eld due to the thermal agitation energy, and (ii)
the higher the temperature the higher the density of
dipoles available contributing to the total polar-
isation. The ®rst case can be treated by a Langevin
type equation, which leads to a variation of the
dielectric susceptibility, �0 � "0 ÿ 1, proportional to
1/T. If the material su�ers any phase transition, the
equation can be rewritten with a correction para-
meter, TO, giving the well known Curie±Weiss law,
where �0 / 1= Tÿ TO� �. It is conceivable that this
behaviour corresponds to an increase in the
relaxation time for a given type of dipoles, i.e. the
higher the temperature the slower the polarisation
process. This is normally formulated by an activa-
tion process for the relaxation time, of the type

� � �0 exp ÿU=kT� � �9�

where U is the energy to orient the dipoles, and can
be related to the viscosity of the dielectric medium.
In the second case, the dielectric susceptibility must
increase with the increase of the temperature, since
the density of the dipoles is now increasing. Mak-
ing the same approach as before, this could be seen
as a faster polarisation process, since the prob-
ability of a charge of one sign to ®nd nearby a
charge of opposite sign in order to make a dipole
will be higher. Thus, eqn (9) can be used with a
negative U energy.

The two cases pointed should have physical
meaning. In the ®rst one, the dipoles are thought as

independent entities, i.e. not interacting with each
other, and correspond to the Debye model, e.g.
induced electronic dipoles. It is also assumed that
their density stays constant with temperature. The
second case is normally observed in glass systems
and in ceramic materials, and is assigned to ionic
jumps, where both the density and the jump fre-
quency increase with temperature; again, non
interacting dipoles are assumed. The change in the
density of the dipoles should in¯uence the low fre-
quency region of the permittivity spectrum, i.e. the
"s value should change with temperature, while for
the high frequency region, "1 should be almost
independent of the temperature, since we can
assume that electronic and ionic polarisabilities are
the only ones present. We shall analyse the cases
where both "s and "1 are constant with tempera-
ture, since any variation of these values should be
taken from the experiments.
In Fig. 5 the solid line corresponds to the case

where there is only one type of dipole in the
material, with a positive activation energy for the
relaxation time [case (i) above]. This is an expected
plot because, if the relaxation time is increasing
with temperature, the relaxation process will dis-
appear at some high temperature. The interesting
feature of the graph is that it shows a similar
behaviour for the temperature±permittivity depen-
dence observed in some perovskite type materials,
such as SrTiO3 and KTaO3, which follows the
quantum-mechanical formula proposed by Bar-
rett.6 In Fig. 5 the equation here proposed, is plot-
ted with the values for M, T1, and T0, of the

Fig. 5. Variation of the real part of the dielectric permittivity,
e0, in the case when there is only one dipole in the material.
The relaxation time changes with the temperature [eqn (9)]
with �O � 0�12 s, and U � ÿ0:005 eV. The solid line corre-
sponds to the variation of the permittivity at 10Hz. The points
correspond to eqn (10) with M � 9� 104 K, TO � 38K, and

T1 � 84K.
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following eqn (10), determined for the SrTiO3

system:7

� � M
1
2T1coth T1=2T� � ÿ TO

�10�

where � is the permittivity. In this ®gure, the
agreement of eqn (10) with the plot for the 10Hz
frequency dependence of the permittivity using the
Debye model is very good (it is possible, of course,
to adjust the �O and U values in order to obtain a
similar result for any other frequency). Since eqn
(10) turns to be of the Curie±Weiss type for high
temperature, it can thus be assumed that the
approach taken above for case (i) is valid, i.e. that
the temperature dependence of the relaxation time,
eqn (9), is applicable to the Debye model. The
agreement between the two curves in Fig. 5 is for-
mally expected from the mathematical point of view,
since for high temperatures both depend exponen-
tially on the temperature. However, they sig-
ni®cantly di�er on the physical basis. Equation
(10) is derived for the ionic polarisability of the Ti
ions in titanates, for temperatures above the Curie
point, i.e. for the nonferroelectric state. Here, we
assumed that the ionic polarisability do not change
much with temperature (it contributes to both "s,
and "1), and we are only analysing the decrease of
"s, to "1 i.e., the e�ect of the temperature on the
relaxation behaviour of some unknown dipole. If
this dipole is assumed to be originated from the
Ti ions in the perovskite titanates, which follow
the Debye relaxation with the relaxation time
depending on the temperature with an energy of
0.005 eV (the value used in Fig. 5), then it will show
a temperature T1 � 58K, which is not far from the

experimental value of T1 � 84K. However, some
care must be put in the above analysis, because the
very high "s value at low temperature must be con-
sistent with the ionic polarisability of the Ti ions.
If the energy U in eqn (9) is negative, one obtains

a plot exactly opposite of that of Fig. 5. The next
step is then to see what will happen if two types of
dipoles are present in the material with relaxation
times dependent on temperature, either with the
same sign for the energy or with di�erent ones. In
Fig. 6 we plotted the case where both energies are
negative with the rest of the parameters chosen in
a way that it could originate another accident in
the graphs (Table 1 lists the parameters used). The
®gure shows a peak in the permittivity after the
®rst decrease shown in Fig. 5, where the tempera-
ture of the maximum of the permittivity, Tm,
decreases with increasing frequency. The appear-
ance of only one peak is observable in the case
where the energy of one the dipoles is negative,
Fig. 7 (parameters listed in Table 1), with the same
behaviour for the Tm with frequency. When both
the U energies are positive, or if the U energy for
the faster process is positive and the other nega-
tive, one permittivity peak appears again, Fig. 8
(parameters listed in Table 1), but now with Tm

increasing with increasing frequency. It can also be
seen in Fig. 8 that the maximum of the permittivity

Fig. 6. Variation of the real part of the dielectric permittivity,
"0, with temperature, for ®ve frequencies, in the case when
there are two dipoles in the material, both with positive ener-

gies for the relaxation time (parameters used in Table 1).

Table 1. The parameters used in the calculations of "0-versus-
temperature in the case when two types of dipoles are present

[eqn (8)]. For all examples, � � 0�999
tO1�s� U1�eV� tO2�s� U2�eV�

Fig. 6 50 ÿ0.2 0.1 ÿ0.01
Fig. 7 50 ÿ0.2 0.1 0.01
Fig. 8 1�10ÿ9 0.3 0.1 ÿ0.02

Fig. 7. Variation of the real part of the dielectric permittivity,
"0, with temperature, for ®ve frequencies, in the case when
there are two dipoles in the material, one with positive energy
and the other one with negative energy for the relaxation time

(parameters used in Table 1).

2084 P. Q. Mantas



for a given frequency, "m, decreases with the
increase of the frequency. The interesting feature in
this ®gure is that it shows a permittivity peak very
similar to that of the relaxor behaviour observed in
some ferroelectric materials.8 Using the VoÈ gel±
Fulcher relation, used to describe the relaxation in
spin-glass systems,8

w � wO exp ÿUa=k Tm ÿ Tf

ÿ �� � �11�

where Tm is the temperature of the maximum per-
mittivity for the w frequency, and Tf is the static
freezing temperature, with the values of Fig. 8, one
obtains an activation energy Ua of 0.44 eV, which
is far above the energies for the relaxation time
used. Comparing this value with the one obtained
by Viehland et al.8 for the PMN-10PT system,
0.0407 eV, it can be seen that our calculations are
unable to explain the relaxor behaviour of these
systems. If the relaxor behaviour is explained by a
spin-glass model, it means that the system is viewed
as interacting superparaelectric clusters with size
dispersion, and a relatively small di�erence in the
clusters size would make a large change in their
¯uctuation frequency.8 In this paper, we are not
including in the model any interaction between the
dipoles, and this could be the reason why the
model fails to explain the relaxor behaviour in
some materials. If the dipoles do not interact with
each other, then it is possible to observe an experi-
mental curve like the one shown in Fig. 8. This
seems to be the case in Bi4Ti3012 single crystals,
which show a dielectric anomaly in the temperature
range of 500 to 600�C, i.e. below the transition
temperature, as reported by Kim et al.9 A rough
estimation of the activation energy using eqn (11)

with the authors values (Fig. 3 in Ref. 9), gives
1.0 eV, which is in the energy range that the present
model is able to explain.

5 Conclusions

In this paper we tried to extend the Debye model for
the relaxation behaviour of dielectrics by including
more than one dipole type, each one with its
relaxation time. This is di�erent from the case
where one chooses a distribution of relaxation times
for the same dipole. It was shown that the inclusion
of more than one dipole type is enough to obtain
Cole±Cole plots with overlapped semicircles or
with ¯attened semicircles. Taking the temperature
dependence for the relaxation times, it was also
shown that, depending on the sign of the activation
energies, it is possible to obtain peaks on the per-
mittivity-versus-temperature graphs, some of them
following the relaxor behaviour found in some
ferroelectric materials.
It must be emphasised that the extension of the

Debye model aims to explain experimental results
sometimes found in ceramic materials, particularly
in the frequency region where loss peaks are
observed. For frequency regions far from this one,
and as pointed out by Jonscher,1 the experimental
results are better described by other time functions
rather than the exponential one. In the Debye
model, the dipoles do not interact to each other, but
perhaps the inclusion of retardation process in this
model could account for the interaction between
the dipoles. This is under study in order to analyse
its e�ect also in the case of ferroelectric domain
motion. The existence of permanent dipoles in pie-
zoelectric materials and their e�ect on the relaxa-
tion process is of main scienti®c interest, and it was
not taken in consideration in this paper. Both
issues will be treated in a forthcoming paper.
In the design of experiments it is very important

to pay attention to the physical state of the mate-
rial, namely the electrodes, as pointed out by Fleig
and Maier,5 who showed, by ®nite-element study,
that the impedance Cole±Cole plots can sig-
ni®cantly change with the shape of porous electro-
des. This parameter as well as other material
parameters like second phases, interaction with
atmosphere, and porosity, for example, must be
taken into consideration in the analysis of experi-
mental results. In this paper we took only the e�ect
of di�erent dipoles in the relaxation process, and
not the e�ect of di�erent resistivities that the
materials can show. This issue emphasises the need
to separate experimentally the current originating
from the polarisation/depolarisation process from
that of the electronic transport in the material.

Fig. 8. Variation of the real part of the dielectric permittivity,
"0, with temperature, for ®ve frequencies, in the case when
there are two dipoles in the material, one with positive energy
and the other one with negative energy for the relaxation time
(parameters used in Table 1). The results are similar to those

observed in relaxor materials.
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